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Non-Newtonian Effects in Viscous Flows 
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Revision of the mathematical formalism of fluid dynamics suggests that some 
physical inconsistencies (infinite time of approaching equilibrium and fully 
deterministic solutions to the Navier-Stokes equations) can be removed by 
relaxing the Lipschitz conditions, i.e., the boundedness of the derivatives, in the 
constitutive equations. Physically such a modification can be interpreted as an 
incorporation of an infinitesimal static friction in the constitutive law. A modified 
version of the Navier-Stokes equations is introduced, discussed, and illustrated 
by examples. It is demonstrated that all the new effects in the modified model 
emerge within vanishingly small neighborhoods of equilibrium states which are 
the only domains where the governing equations are different from classical. 

I. I N T R O D U C T I O N  

One of  the central problems in fluid dynamics is to explain how motion 
which is described by fully deterministic governing equations can be random. 
Indeed, let us consider exponential growth of a vorticity component to: 

to = to0 e~', 0 < h < oo (1) 

Obviously a solution with an infinitesimally close initial condition 

= tole • to1 = too + e, �9 0 (2) 

will remain infinitesimally close to the original one: 

I t o - 0 5 1  = � 9  x ' ~ 0  at t < o o  if � 9  (3) 

during all bounded time intervals. 
This means that random solutions can result only from random initial 

conditions when �9 in (2) is small, but finite rather than infinitesimal. In other 
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words, classical fluid dynamics can explain amplifications of random motions 
by the mechanism of instability, but it cannot represent their origin using 
mathematical formalism. 

The recent discovery of chaotic motions in nonlinear dynamics demon- 
strates that the same kinds of problems exist in the general formalism of 
Newtonian mechanics when motions described by fully deterministic models 
appear to be random. A revision of this formalism was presented by Zak 
(1992, 1993a,b) and here we will briefly discuss it. 

The governing equations of classical dynamics may be derived either 
from Lagrangian functions, from variational principles, or directly from New- 
ton's laws of motion, and they may be presented in various equivalent forms. 
However, there is one mathematical restriction on all such forms: the differen- 
tial equations describing a dynamical system 

xi : Vi(Xl, X2 . . . . .  Xn), i = 1, 2 . . . . .  n (4) 

must satisfy the Lipschitz condition, which expresses that all the derivatives 

av, 
< o~ (5) 

axj 

must be bounded. This mathematical restriction guarantees the uniqueness 
of the solution of (4), subject to fixed initial conditions. 

This condition allows one to describe the Newtonian dynamics within 
the mathematical framework of the classical theory of differential equations, 
which guarantees its predictability. That, in turn, leads to such effects as 
infinite time of approaching an attractor, infinite time for escape of a repeller if 
changes in initial conditions are infinitesimal, untractability of two trajectories 
which originally are "very close," but diverge exponentially, etc. 

Hence, there are a variety of phenomena whose explanations cannot be 
based directly upon classical dynamics: in addition, they require some "words" 
about a scale of observation, "very close" trajectories, etc. 

Tuming to the governing equations of classical dynamics, 

d OL OL aR 
- i = 1,  2 . . . . .  n ( 6 )  

dt OOi Oqi Oqi '  

where L is the Lagrangian, qi and qi are the generalized coordinates and 
velocities, and R is the dissipation function, one should recall that the structure 
of R(~li . . . . .  c~,,) is not prescribed by Newton's laws. Some additional assump- 
tions are to be made in order to define it. The "natural" assumption (which 
has never been challenged) is that these functions can be expanded in a 
Taylor series with respect to equilibrium states: qi -- O. Obviously, this 
requires the existence of the derivative I OER[O(liO(li I < ~ at t~i ---) O. 
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A departure from that condition was proposed in Zak (1993a) (see the 
Appendix), where the following dissipation function was introduced: 

l [~jOri k+l 
R kq_l~iOti  ~qjdlj (7) 

in which a,- are positive constants, N is the number of the friction forces 
applied to the points ri, and 

k -  P-----~--- < 1, p > >  1 (8) 
p + 2  

where p is a large odd number. 
By selecting a large p, one can make k close to 1, so that (7) is almost 

identical to the classical one (when k = 1) everywhere, excluding a small 
neighborhood of the equilibrium point qj = 0, while at this point one has 

02R 
- - ~  at Oj--~O (9) 

o4ioOj 

Hence, the Lipschitz condition is violated; the friction force Fi = -OR/Odli 
grows sharply at the equilibrium point, and then it gradually approaches its 
"classical" value. This effect can be interpreted as a mathematical representa- 
tion of a jump from static to kinetic friction, when the dissipation force does 
not vanish with the velocity. 

It appears that this "small" difference between friction forces at k = 1 
and k < 1 leads to fundamental changes in Newtonian dynamics. In order 
to demonstrate it, we will consider the relationship between the total energy 
E and the dissipation function R: 

dE= _ ~  Cl, OR _ (k + 1)R (10) 
dt i Offli 

Within a small neighborhood of an equilibrium state (where the potential 
energy can be set tb zero), the energy E and the dissipation function R have 
the order, respectively, 

E - - q  2, R ~ i  +'  at E - - ) 0  (II)  

Hence, the asymptotic form of (I0) can be represented as 

dE 
- -  = AE k+'12 at E --) 0, A = const (12) 
dt 

If A < 0 and k < I, the equilibrium state E = 0 is an attractor where 
the Lipschitz condition ( I dE/dEl --~ ~ at E --) 0) is violated. Such a terminal 
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attractor (Zak, 1992) is approached by the solution originating at E = AE0 
> 0 in finite time: 

I 
o d E  2AL~t-k]2) 

to = A E  tk+l/2---------~ - (1 - k) lAI < ~ (13) 
AE0 

Obviously, this integral diverges in the classical case k >- 1, where 
to ~ ~. The motion described by (12) has a singular solution E -- 0 and a 
regular solution 

E = [AE0 I-k/2) + �89 - k)t] 2/(t-k) (14) 

In a finite time, the motion can reach the equilibrium and switch to the 
singular solution E -- 0, and this switch is irreversible. The property of  the 
solution to the equation x = - x  t/3 [which is of  the type of equation (12)] is 
illustrated by Fig. l a. 

As is well known from the dynamics of  nonconservative systems, dissi- 
pative forces can destabilize the motion when they feed external energy into 

X 0 3 ~  _ 

Xff' T (x *~ O) : TERMINAL ATTRACTOR e 

.,~ = $113 

x m - - - 2 1  

- I 
' Xoi - - - - - -  I I 

- ~ I[i �9 { 
. I ~ ' ~ ~ _ _  ~ TI2 13 

~I~ (x = 0) : ~ A J . . .  RF.Pm l ER 

Fig. 1. Behavior of terminal attractor and repeller. 
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the system (the transmission of energy from laminar to turbulent flow in 
fluid dynamics, or from rotations to oscillations in the dynamics of flexible 
systems). In terms of (12), it would mean that A > 0, and the equilibrium 
state E = 0 becomes a terminal repeller (Zak, 1992). 

If the initial condition is infinitely close to this repeller, the transient 
solution will escape it during a finite time period (Fig. 1), 

( aeo d E  2AE0 I-~2 
to = A E  {k+lv2 - (1 - k ) A  < oo (15) 

.t (--->0 

while for a regular repeller the time would be infinite. 
Expressing (12) in terms of  the velocity at i = 1, qj = v, 

i; = By ~, B = const > 0 (16) 

one arrives at the following solution: 

v = +- { [B(1 - k)t]  p+2 } 1/2 (17) 

As in the case of a terminal attractor, here the motion is also irreversible: 
the time-backward motion obtained by formal time reversal t ---> - t  in (17) 
is imaginary, since p is an odd number [see (8)]. 

But in addition, the terminal repellers possess even more surprising 
characteristics: the solution (17) becomes totally unpredictable. Indeed, two 
different motions described by the solution (17) are possible for "almost the 
same" (v0 = +e  ---> 0, or v0 = - (  ---> 0 at t ---> 0)initial conditions. Assuming 
that positive and negative disturbances --+~ occur with equal probability 0.5, 
one arrives at the situation where instability and nonuniqueness of  the solution 
impart elements of stochasticity to the postinstability behavior. 

Thus, a terminal repeller represents a vanishingly short, but infinitely 
powerful "pulse of  unpredictability" which is pumped into the system via 
terminal dissipative forces. Obviously, failure of the uniqueness of  the solution 
here results from the violation of  the Lipschitz condition at v = 0. 

As is known from classical dynamics, combination of  stabilizing and 
destabilizing effects can lead to chaos. In order to describe similar effects in 
dynamics with terminal dissipative forces, let us slightly modify (16) assuming 
that B = B0 cos tot. 

Then stabilization and destabilization effects alternate. With the initial 
condition v ---> 0 at t ---> 0, the exact solution to (16) consists of  both a 
regular solution 

[ ~ ],/(t-k) 
B0( 1 k) totJ , v v = --- - -  sin :~ 0 (18) 

and a singular solution v = 0. During the first period 0 < t < 'rr/2to, the 
equilibrium point v = 0 is a terminal repeller. Therefore, within this interval, 
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the motion can follow one of two possible trajectories (18) (each with proba- 
bility 1/2). During the next period "rr/2to < t < 3"rr/2to, the equilibrium point 
becomes a terminal attractor; the solution approaches it at t = "rrto and it 
remains motionless until t > 3"rr/2to. After that the terminal attractor converts 
into a terminal repeller, and the solution escapes again, etc. It is important 
to notice that each time the system escapes the terminal repeller, the solution 
splits into two symmetric branches, so that there are 2" possible scenarios 
of oscillations with respect to the center v = 0, while each scenario has the 
probability 2-" (n is the number of cycles). Hence, the motion (18) resembles 
chaotic oscillations known from classical dynamics. It combines random 
characteristics with the attraction to a center. However, in the classical case, 
the chaos is caused by a supersensitivity to the initial conditions, while the 
uniqueness of the solution for fixed initial conditions is guaranteed. In con- 
trast, the chaos in the oscillations (18) is caused by the failure of the uniqueness 
of the solution at the equilibrium points, and it has a well-organized probabilis- 
tic structure. Since the time of approaching the equilibrium point v = 0 by 
the solution (18) is finite, this type of chaos can be called terminal (Zak, 
1992, 1993a,b) or nondeterministic. 

Within the framework of terminal dynamics, formations of new patterns 
of motion can be understood as chains of terminal attractions and repulsions. 
As demonstrated above, during each terminal repulsion the solution splits 
into two symmetric branches, and the motion can follow each of them with 
equal probability. 

As shown in Zak (1993a,b), such a scenario can be described by a 
system of differential equations with terminal equilibrium points. In contrast 
to stochastic equations, here randomness results from the violation of the 
uniqueness of the solutions, and therefore the differential operator itself 
generates random motions. Because of that, terminal dynamics possesses a 
well-organized probabilistic structure, described by a Fokker-Planck type 
of equation whose coefficients are uniquely defined by fully deterministic 
parameters of the original dynamical system (Zak, 1993a,b). At the same 
time, it should be stressed again that all the new effects of terminal dynamics 
emerge within vanishingly small neighborhoods of equilibrium states, which 
are the only domains where the governing equations are different from 
classical. 

Now we formulate the basic physical assumptions underlying the paper. 
The dynamics of a fluid, on the macroscopic level, is described by the 

Navier-Stokes equations, which are based upon Newton's laws. However, 
some additional physical assumptions are needed to introduce the dissipation 
function which defines the rheology of the stress-strain relationships in a 
fluid. On the macroscopic level, these assumptions are based upon the first 
two laws of thermodynamics, as well as upon the principles of kinetics. The 
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rest of the "details" must be found from experiments. However, there is 
another set of assumptions (which are of a mathematical nature) used in 
the formulation of the Navier-Stokes equations. The most powerful is the 
requirement of differentiability (as many times as necessary) of all the macro- 
scopic parameters with respect to time and space coordinates. Such a require- 
ment is fully compatible with the principles of the macroscopic level of 
description. However, another mathematical assumption about the expand- 
ability of the dissipation function in a Taylor series with respect to the 
state of equilibrium (which is used for deriving the simplest version of the 
constitutive law) is not as "innocent" as it may look on first sight. Indeed, 
from the physical viewpoint, it eliminates the possibility of static friction or 
plasticity effects which may exist within the infinitely small neighborhood 
of equilibrium states. Models which describe such effects are well known 
(Ziegler, 1963) and they are fully compatible with the laws of mechanics 
and thermodynamics. From the mathematical viewpoint, the assumption about 
the expandability in a Taylor series of the dissipation function enforces the 
Lipschitz condition at the equilibrium states, and that, in turn, leads to infinite 
time of approaching these states. The main objective of this paper is to show 
that by relaxing the Lipschitz condition in the constitutive law of viscous 
liquids one will have a much more realistic scenario of behavior of liquids 
in the domains approaching and departing from the equilibrium states. 

2. CONSTITUTIVE EQUATIONS 

Following the ideas described in the Introduction, we will introduce and 
discuss here the non-Lipschitzian version of the dissipation function for a 
liquid in the same way as it was done in (7). 

As follows from extremum principles in irreversible thermodynamics 
(Ziegler, 1963), the simplest form of the dissipation function for an isotropic 
liquid which may incorporate non-Lipschitzian properties is the following: 

R = 9(12) (19) 

where ~ is a positive-definite differentiable function of the second invariant 
12 of the rate-of-strain tensor e: 

= de fv  = �89 + Vv r) (20) 

i.e., 

12 = �89 

Here ~jk are the components of the tensor e: 
1 (Ovj 0vk / 

(21) 

(22) 
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while vj are the components of the velocity vector v. 
The dissipation function (19) defines the deviatoric stress tensor: 

1 p ~  
Crik--2 12 ~jk (23) 

The isotropic part of the stress tensor can be represented in the simplest form 
(since V.v  = 0) 

, 
O'ii = - p  (24) 

where p is the pressure. 
Turning back to equation (19), let us specify the dissipation function 

as follows: 

p~b = 4~ '  h (25) 

where Ix' and eo are positive constants with the dimensions of viscosity IX 
and the rate-of-strain ~, respectively, while k < 1 is given by (8). 

Then the deviatoric stress tensor follows from equations (23) and (25): 

o'jk = 2IX' ej~ (26) 

Equation (26) is different from the Newtonian liquid only within an 
infinitely small neighborhood of the equilibrium states where 

/2--->0, i.e., ~j~, crjk ---~ 0 (27) 

Otherwise 

% ] 

as follows from (26) and (28), and IX' = 2IX, where ~ is the classical viscosity. 
One can verify that the Lipschitz condition for the function (26) at 

12 ~ 0 is violated since 

co at 12 ---) 0 (29) 
aej~ 

Mathematical consequences of this property (which are similar to those 
described in the Introduction) will be discussed in the next section. 
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The physical meaning of the property (23) is clear: it describes a limit 
case of a viscoplastic body when the domain of plasticity is vanishingly 
small; see Fig. 2. 

Let us summarize now all the arguments for selecting k based upon 
equation (8). 

First, k must be close to 1, 

I k - l l < < l  

to preserve classical results in domains which exclude only small neighbor- 
hoods around equilibria [see equation (28)]. 

Second, k must be less than 1, 

0 < k < l  

to introduce the plasticity effects around equilibria via the relaxation of the 
Lipschitz condition [see equation (29)]. 

Third, k must be represented by a fraction with an odd numerator and 
an odd denominator in order to preserve the stress-strain relationships in the 
form given in Fig. 2. Indeed, in the case of an even numerator, the left branch 
in Fig. 2 will be positive, while in the case of an even denominator, it will 
be imaginary. Obviously both cases are physically unreal;stic. 

Hence, actually equation (8) minimizes the degree of arbitrariness to 
which the constant k is defined. It should be noticed that similar model was 
discussed by Ziegler (1963), who introduced a limit case of a viscoplastic 
model. 

f 
f 

ejk 

Fig. 2. Limit case of stress-strain relationship for viscoplastic body. 
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In the case of a two-dimensional flow where the velocity can be expressed 
via the stream function t~, 

a~ aq, 
vl Ox2 v2 - Oxl (30) 

we have 

~(4, + + + 24: )=  ( 02, / ~ f @  @.~ 
h = ~ _ \o~,o~] + \ o 4  o~i) 

and equation (26) becomes 

(31) 

- ~ 2 { @  o2.~T_,  _ = ,_,.,,,-dr ' - ~ / +  ,,2 o~, ~ )  
0"1' L\ax,ax2] ~,ax~ ~ }  J axlax2 

0"z2 = -IX'e~ -k + ~ Ox~ Oxl ] J ax,a~x2 (33) 

0,2-- -P"d-~L\ax,ax.,./ + \a~ 'g~x2,) J ~.5-~2 axl2/ (34) 

In the simplest case of a two-dimensional unidirectional flow 

Z/1 = U, 02 : U 3 : 0 ,  0-11 = 0"22 -~" 0"33 = 0"13 = 0"23 = 0 

the only nonzero component of the stress tensor is 

, I -k{ OId~ k 
0-,2 = IX % ~-~x2)' i x ' =  2ix 

This case was analyzed in Zak (1993a). 
Equations (31)-(36) will be exploited in our further discussions. 

(35) 

(36) 

3. GOVERNING EQUATIONS 

Substituting the constitutive equations (26) into the momentum equations 

p + v V v  = - V p  + V'0- (37) 

and taking into account the identity 

V.(ctA) = etV-A + A.V~ (38) 

holding for arbitrary tensor A and scalar a,  one obtains the non-Lipschitzian 
version of the Navier-Stokes equation: 
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p + v V v  

where 

This equation 
incompressibility: 

= - V p  + ix*[/~k-tv2XT.(XTv + XTv r) + (XTv (39) 

~L* -~" I. t r l - k  ~w =o = const 

must be complemented by the condition of 

V . v  = 0 (40) 

Equation (39) is different from the Navier-Stokes equation only within van- 
ishingly small neighborhoods of equilibria where 

Otherwise 

12 ---> 0, i.e., cr ---> 0, �9 ---> 0 (41) 

/~k-l)/2 = 1, V(/~ k-t~/2) ---0, e I - k =  1 (42) 

which reduces equation (39) to its classical form 

(~ p + v V v  = - V p  + lxV'(Vv + Vv r) (43) 

In the particular case (35)-(36) of a two-dimensional unidirectional 
flow, equations (39)-(40) reduce to one equation: 

(0u/':-, OU 021l ~L - - ~ V *  
Ot \Ox2] OxZz ' v = --p (44) 

which is different from the classical diffusion equation 

Ou OZu 
- v -  ( 4 5 )  

Ot 0 4  

only if 

O-~xU ---> 0 (46) 

4 .  L A R G E - S C A L E  E F F E C T S  

Let us evaluate the range of motion scales where the proposed model 
describes special effects missed in the classical description. 
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Turning to the constitutive equation (19) and expanding it in a Taylor 
series 

R = a l l2  + a 2 ~  + "'" (47) 

one can verify that the Newtonian liquid described by the Navier-Stokes 
equation corresponds to the case when only the first term in equation (47) 
is kept. That is why this simplest model is valid only for velocity gradients 
which are relatively small in comparison to those on the molecular scale. 

The same conclusion can be made based upon statistical mechanical 
concepts when the nonequilibrium component of the Maxwell distribution 
function is expanded in a Taylor series. 

However, there is another possibility in representing equation (47); 
for instance, 

R = a _ l ( 1 2 )  - I  + a_2(12)  - 2  + - . -  (48) 

It has never been exploited because of the mathematical "inconvenience" 
caused by the singularity at equilibria where Iz ---) O. 

The proposed model defined by equation (25) belongs to the same type 
as equation (48), although it has a weaker singularity: 

dR 
R-->0, but ~ - _ > o o  a t l 2 - - ) 0  (49) 

i.e., at equilibrium the Lipschitz condition is violated. 
It should be expected that contrary to the case (47), constitutive laws 

of the type (48), including the proposed model, take into account the large- 
scale motion effects. Indeed, as pointed out above, the proposed model 
describes new effects when the velocity gradients are small in the sense that 

-< ~o (50 )  

Here e0 is the physical constant of the liquid introduced by the constitu- 
tive equation (25). Since its dimensionality is 

1 
[e0] - ( 51 )  

s e c  

one can introduce the time scale To of the motions described by the proposed 
model. Indeed, based upon (50) and (51), one obtains 

v0 1 _< e0 (52) 
Lo To 

whence 



Non-Newtonian Effects in Viscous Flows 1435 

1 
To -> --  (53) 

E0 

The length scale L can be found from the condition 

Lo = ~/vTo >-- , I v  where v = ~ (54) 
~E0  P 

The evaluations (53) and (54) demonstrate that the proposed model describes 
large-scale motion effects, i.e., motions close to equilibria where the velocities 
and their gradients are relatively small. 

Turning to the governing equations (39), one can simplify them by 
ignoring the convection terms of the acceleration which are small in compari- 
son to similar viscous terms in the domain of large-scale motions (53), (54): 

0v 
P 0 t  = - V p  + ix*[/~k-'v2V-(Vv + Vv r) + (Vv + Vv r) (55) 

�9 17(fhk- ly2)] 

The expression for the energy dissipation 

E~ - 2 J~ \oxj + -~x~] dv (56) 

does not differ much from the classical case (k. = 1), which means that it 
decreases with the growth of the length scale: 

E~ ~ , ~ t  r - I / 2 ,  11z o,/z~ ,-,t,-,o "0 ,,e J (57) 

The same can be said about the dissipation stresses [see equation (26)]. 
However, the dissipation forces V. o', i.e., the contribution of the dissipa- 

tion stresses to the momentum equation, differ significantly from the classical 
case k = 1: they grow sharply with the decrease of the velocity gradients, 
becoming unbounded at equilibrium. As will be shown below, the last property 
is responsible for.a finite time of approaching equilibria. From a physical 
viewpoint this means that at equilibria the dissipation is carried out by 
static friction. 

Thus, the modification of the constitutive law which relaxes the Lipschitz 
condition at equilibria by introducing a vanishingly small static friction elimi- 
nates one of the least "damaging" inconsistencies in fluid dynamics (as well 
as in classical dynamics): theoretically infinite time of approaching equilibria. 
However, as a "side effect" it eliminates a more "damaging" inconsistency: 
the occurrence of stochastic motions in flows which are described by fully 
deterministic hydrodynamic models. As will be shown below, the relaxation 
of the Lipschitz condition at equilibria in combination with instability may 
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cause the failure of the uniqueness of the solution to equations (39) and 
(40), and that can be represented by additional stochastic components in the 
solution. The instability mentioned above is of the same type as in equation 
(16): it is a supersensitivity to infinitesimal changes of initial conditions. At 
first sight it seems unlikely that at equilibria where the actual viscosity is 
very large (strictly speaking, it is a static friction rather than viscosity), any 
instability can occur at all. However, as is well known from the theory of 
hydrodynamic stability, viscosity can be a destabilizing factor, for instance, 
in parallel flows where the conditions (41) are well satisfied. 

5. BEHAVIOR AROUND EQUILIBRIA 

In this section we analyze the behavior of a non-Lipschitzian liquid 
within vanishingly small neighborhoods of equilibrium states where the condi- 
tion (41) holds. 

Our analysis will be based upon the energy balance for the liquid in a 
volume Q with the boundary s, which for any isotropic liquid can be presented 
in the following form (Landau and Lifshitz, 1953): 

0io [ ( , : )  ] fo 0 i v, 8, - , v o ,  , , . -  

Here vtr denotes a vector with the components v,~a, and n is the unit normal 
to the surface s. 

Confining our discussion to a two-dimensional flow and utilizing equa- 
tions (30)-(34), one rewrites equation (59) in terms of the stream function ~: 

2 at L\ax,] \ax2/J 

llJ* 
\O~ ~11 dxay 

+ 21,* f LL\Ox,Ox~] + kOx~ Oxi) J 

x kOxOx2Ox~ laxi od) Ox,j 

L\ax,Ox-,] + \o~ -~x~,} J 
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where 

x V/~ f ~ / -  + 0~___~ ~lcos o~} ~s 
LkOx~ axi/ ax2 ax~Ox2 ax,j 

- f + 2 L\ax] \Oy] j ~x~ \ax2] j cos ~ ds (59) 

v* - - ~/e~-* (60) 
P 

~x~(x~x2) and q~(x~, x2) are angles between the unit normal n and the coordinate 
axes xt and x2 and the velocity vector v, respectively. It is understood that 
these angles are known from the boundary conditions. 

Let us assume that 

v.  n = 0, i.e., cos q0 = 0, but (vo'). n ~: 0 (61) 

which means that the external flow does not penetrate the volume boundary 
S, and therefore the exchange of energy between the volume Q and the 
external flow is carried out by the viscous term (vet). 

Then the last term in equation (59) vanishes. 
Suppose that 

= ~l(t)~2(xl, x2) (62) 

Then equation (59) can be reduced to an ordinary differential equation 
for ~l(t): 

•l = ~l*(-al + az)g/~, a l  > 0 (63) 

where 

A, = ~ k-~x 2 -~xl] dx dy 

x }-' L\~-Tx, / \-~x2) J dx dy = const 

fo {r o   /O<cos A2 = 2 a I_0~10x2 Ox2 + k-~x21 -~2 ] Ox, J 

x{ior(o,    ,_o, < - ,  L\-~x~ / -~-]x2lj ~@} 

ix! 

(64) 
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and 

+ fQ Lax---]~2 ax---( ~,-d-~x22 '~x~] 0x23 

{Io } [l~ ~ -- onst x L\'g~x~] + ax---2] J 

= [( 02@2 12 [a%2 a2,,~21 <k-l,'~ 
" k\ax,ax=) + k-d-~x2~ -~-) J 

We will analyze equation (52) for the two cases when 

A2 - Al = -B 2 < 0 

and 

(65) 

(66) 

(67) 

(,%,-k 
to=~_kvB2(l _ k )  < ~ if k <  1 (73) 

@l -- 0 (72) 

the regular solution (71) approaches equilibrium, i.e., the singular solution 
(72). This time depends upon the constants k and %, which can be found 
from experimental measurements of to. 

It should be stressed that in the classical case (k = 1), the solution to 
equation (63) approaches the equilibrium (72) asymptotically, i.e., to ---) oo. 
That is why the parameter k found from equation (73) must be less than one. 

In a finite time 

and singular solution 

A2 - A1 = B 2 > 0 (68) 

In the case (67) assume that 

~ ( t  = 0) = ~o > 0 (69) 

which corresponds to the initial kinetic energy of the flow: 

P fQ [(0@2/2 (3*212ldxdy>O (70) 
Eo = ~ (,0)2 L\Tx,] + \~-s J 

Then equation (63) [under the condition (67)] describes the damping of the 
fluid motion due to viscous stress. It has the regular solution 

~l = [(@O) l-k _ v,B2(1 - k)t]tlO-k) (71) 
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In the case (68) assume that 

t~,(t = O) = ,o __.> 0 (74) 

i.e., the liquid is in equilibrium, 

Eo = 0 (75) 

Under the condition (68), this equilibrium is unstable. Indeed, equation 
(68) subject to the initial condition (74) has the form 

d)l = +_[v*B2(I - k)tlU(I-k) (76) 

The solution (76) possesses a remarkable property: it departs from equi- 
librium so fast that the velocity becomes finite despite vanishingly small 
disturbances (74) [compare with the classical case (3)]. At the same time, 
with equal probability 1/2, this solution can become positive or negative, 
which means that the solution attains stochastic properties. It should be 
emphasized that this stochasticity results from the relaxation of the Lipschitz 
condition at equilibria, and that, in turn, leads to failure of the uniqueness 
of the solution. Thus, formal incorporation of an infinitesimal static friction 
in the constitutive equation of the liquid allows one to explain the statistical 
nature of turbulence: in domains of supercritical Reynolds numbers, infinitesi- 
mal random components of the solution caused by the failure of the Lipschitz 
condition are amplified by the mechanism of in.stability and lead to fully 
developed stochastic motions. 

6. ATTRACTION TO EQUILIBRIUM AFTER SUDDEN MOVE 
O F  BOUNDARIES 

In the previous section we discussed two fundamentally new properties 
of the non-Lipschitzian model of liquid: a finite time of approaching equilibria, 
and occurrence of stochastic solutions to the modified Navier-Stokes equa- 
tions. Both of these effects are in full agreement with experiments. 

In this section we will illustrate the modified model by the example of 
an unsteady unidirectional flow induced by a sudden simultaneous movement 
of both lower and upper boundaries. 

Utilizing the constitutive law (36), one can write the following govern- 
ing equation: 

O--U-U = v* (Oul  k-.  02u (77) 
Ot \ Oy ] Oy z 
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subject to the following boundary and initial conditions, respectively: 

u(0, t) = u0, ~yy (l, t) = 0, 0 < t < + ~  (78) 

u(y, O) = O, 0 < y < l (79) 

Here u is the flow velocity parallel to the horizontal axis x, y is the axis 
normal to the flow, 21 is the distance between the lower and upper boundaries, 
v* is the modified viscosity expressed by equation (60), u0 is the initial 
velocity of  the boundaries, and k is expressed by equation (8). 

The second boundary condition in (77) is formulated for the middle line 
between the boundaries in virtue of  the symmetry of  the problem. 

For k = 1 one arrives at the classical diffusion equation: 

Ou 32u 
- v ( 8 0 )  Ot Oy 2 

The solution to this equation subject to the boundary and initial condi- 
tions (78) and (79) is well known: 

4Uo ~ 1 
u(y, t) = Uo - -  

"rr ,=02n + 1 

[ (2n2 + 1)2"rr2v ] (2n + l)'rr 
exp 4/2 t sin 21 Y (81) 

0 < y < l ,  0 < t <  + ~  (82) 

where v is the kinematic viscosity. 
Obviously, this solution is valid for equation (77) in the domains where 

the condition (28) is satisfied, i.e., where 

c9.~_.~ _ O(~0) (83) 

As follows from the solution (81), the condition (83) holds if 

0 < t < t ,  (84) 

where 

t ,  -- O(l/~0) (85) 

Turning to equation (77), let us introduce a new variable a: 

u = e0a (86) 

whose dimensionality is 
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[a] = L since [Co] = T -l  (87) 

Therefore, 

L\~/ _J = 1 
(88) 

Then equation (77) can be rewritten in the form 

(/" Oa Oa - 02~ 
- - =  v ( 8 9 )  
Ot \ 3y } 3y 2 

Since we are looking for the solution to (89) in the domain t > t , ,  the 
boundary and initial conditions are now formulated as 

3~ 
a(O, t) - t/0, ~y (/, t) = 0, t ,  < t < +oo (90) 

a(y, t , )  = a , ,  0 < y < l (91) 

Here 

ao = e0Uo, a ,  = e0u, (92) 

where u ,  is the velocity at t = t ,  obtained from the classical solution (81), 
which is valid for 

0 < t <- t ,  (93) 

Seeking the solution to equation (89) in the domain t > t ,  for k < 1 
[see equation (8)] in the form 

a = ao + ul(t)uz(y) (94) 

one obtains 

at + hvu k = 0 (al = dul/dt),  h = const (95) 

u~(u~k- t + Xaz =.0 (u~ = duz/dy) (96) 

The general solution to equation (96) has the form 

/ 1 u~ + Ci du2 + C2 (97) 
Y - k + l  

where C~ and C2 are arbitrary constants. 
As follows from (97), y is a continuous function of k, so that 

y(k) --~ y( l )  if k --~ 1 [see (8)1 (98) 
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Hence, equation (97) can be approximated by the classical solution 

y ~- ~ u~ + Ct du2 -i- C2 (99) 

and therefore 

E ]2 4 ~-~ 1 2n + 1 (2n + l)'tr 
u2 = - -  2 l  2 - I  'rr 2n + 1 sin "try, h.n = (100) 

For each h,, in (92), one can obtain a particular solution to equation (95): 

u/n) = [Cn - (1 - k)vhM] l/~l-k), C,~ = const (101) 

However, since equation (95) is essentially nonlinear, the superposition princi- 
ple is not applicable here. In order to circumvent this difficulty, we will 
confine ourselves to the solution for sufficiently large time, 

t > t ,  [see equation (85)] (102) 

where the lowest mode corresponding to 

,IT 2 
x0 = (lO3) 

dominates over the others. 
Then the solution to equation (89) reduces to 

{ [ ]" l i =  ~7 o 1 - 4 C o -  (1 - k) ~2u "try - ~ -  t sin ~ - ,  t --> t ,  

( 104 ) 

The constant Co can be found by matching the solutions (81) and (104) 
a t t  = t , , y  = l: 

Co = exp 4F-~eo J J + 4/ze0 

while 

( ) ' t r y  (106) a ,  = ao 1 - 4,IT e-lr2v/412~O sin 2---/ 

Finally, the solution to equation (77) is 

u = Uo 1 - 4__,rr exp ~lFe ~ -j 

(1 ]"-*' - - t sin -try t --> t ,  (107) 
2 l '  
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while for 0 < t <-- t .  the solution can be presented in the classical form (81). 
Although equation (107) represents an approximate solution to equation 

(77), it still preserves its fundamental property: the finite time to of 
approaching the equilibrium: 

1 + 4/2 [ ~ O - - ~ ) q  
t ,  < <  to = r (1 --#)'rr2v exPL 4/2r ] < +oo (108) 

As could be expected, this time depends upon two new physical constants 
of the liquid: k and e0. 

7. SUDDEN START F R O M  REST 

Continuing the analysis of the proposed model of a fluid, in this section 
we will pose the following problem: find the velocity field and the drag 
forces induced by a particle of a vanishingly small size suddenly starting 
from rest. This problem is very important in a variety of physical contexts, 
such as the settling of sediment in a liquid and the fall of mist droplets in 
air. Nevertheless, from a formal mathematical viewpoint, for a Newtonian 
liquid such a problem does not make much sense: all the hydrodynamic 
effects vanish when the size of the particle becomes infinitesimal. 

Indeed, invoking the Stokes solution for a moving sphere, 

tO= ur2sin20( 3ar 41a~) 

one obtains 

F = 6wa~u 

(109) 

(110) 

where a is the radius of the sphere. 
But if this sphere moves in an unbounded volume, any finite size is 

"vanishingly small." That is why the smallness of the size of a particle is 
actually understood as the smallness of the Reynolds number Re. However, 
expressing the drag force in (110) via the Reynolds number, one arrives at 
a singularity for the drag coefficient: 

24 
C~ = -:-- --> oo if Re---->O (112) 

Thus, the classical approach to the problem posed above gives only qualitative 
rather than quantitative results. 

~ ---~ O, F--~O if a--~O (111) 
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We will start with the plane flow in the domain of  small velocity 
gradients, where 

- -  < <  1 (113) 
e0 

Therefore, the momentum equations for this case can be reduced to the form 
(55), i.e., 

/a2m 32e~ 020~ 020"12 020"12 020"22 a 
l-z@ - T / -  + - -  (114) 

in which 0011, crl2, and 0022 are expressed by equations (32), (33), and (34), 
respectively. 

We will show that this equation has a class of solutions which is funda- 
mentally different from those in the classical case. For this purpose, let us 
seek the solution in the following form: 

qJ = a t q ( ~  " + x'2") (115) 

Substituting (115) into equation (114), one obtains 

1 2k m -  e~ = __(l - k ) e ( k - n ( k -  l)2e(k-l)v, 
q - l - k '  l - k '  

(116) 

The two signs for ~ can be expected if one recalls that, as follows from 
equation (8), 

2 n -  1 
k - - -  (117) 

2 n +  1 

where n is the one of the natural numbers 

Then 

n = 1, 2 . . . .  (118) 

1 2 n +  I 
- -  - ( 1 1 9 )  
l - k  2 

and the power 1/(1 - k) includes the square root operation. [The power of  
the second brackets in (116) is positive for k given by (117).] 

The solution (115) in terms of  velocities can be represented in the form 

v, = -+Xze 0 [3-~-, , �89 = •  [3 ~- .  (120) 

w h e r e  



Non-Newtonian Effects in Viscous Flows 1445 

13 = _(1 + k ) k ( k -  1) k+t = const (121) 

while the physical constant t0 is introduced by the constitutive equation (25). 
One can verify that the expression in the first brackets in (87) has the 

dimension of velocity, and the expression in the second brackets is 
dimensionless. 

Substituting (87) into the momentum equations 

&rtt 0~rl2 0v2 1 0 p  + 3trt2 &r22 O v l _  1 cgp + + - -  _ + - -  

cgt p Oxl cgxl 3x2 ' Ot p Ox2 3xl 3x2 
(122) 

one concludes that 

trlt = 0, cr22 = 0, Vp = 0, i.e., p = const (123) 

This means that the velocity field represents a shear flow. 
We will start with the formal analysis of the solution (120). First it 

should be noticed that 

v, = ~ - x2~0 13 ~-~22J , z~ = z~ +__ x,% 13 ~ 1  (124) 

are also the solutions to equation (114), or equation (122), and therefore 
equations (120) represent particular solutions to (122) subject to the initial 
conditions 

v~ = 0 ,  v2 = 0  at t =  0 (125) 

However, in addition, equations (122) have a singular solution for the 
same initial conditions (125), 

Vl -- 0, o2 - 0 (126) 

which is not included in the family of the solutions (124). Obviously such 
a nonuniqueness of solution is a result of violation of the Lipschitz condition 
at equilibrium. As in cases analyzed in the previous sections [see equations 
(17) and (71)], the solution (126) is unstable: infinitesimal initial velocities 

_+~ --~ 0, ___~ ---~ 0 at t = 0  (127) 

transform it into one of the solutions (120) which will rapidly escape from 
equilibrium. It is important to emphasize that the signs of the solutions (120) 
are defined by the signs of the initial conditions (127), which are random. 
Actually this is the origin of the stochasticity of the solutions to the Navier- 
Stokes equations modified to the form (39). 
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However, one should recall that the solution (120) is valid only for those 
domains where the condition (28) is still true, i.e., when 

ov,, I 
Ox2 ~x~ ~ O(eo) (128) 

in which eo is defined by equation (25). 
As follows from equation (120), 

- 1 - k ~ e ~  ( 1 2 9 )  

Hence, the solution (120) is not valid for the domain 

while 

x~, x 2 > ro 2 (130) 

r02 ~ O , 3' = \ - - ~  ] = const (131) 

For this domain one has to apply the original version of the momentum 
equations (39), which include the convective components of the acceleration 
(dropped in (144)]. 

Let us now concentrate on some physical effects described by the solution 
(120). Consider a rigid particle at rest. Then it must be that 

vl = 02 ------ 0, ~ ,  ~ < rg (132) 

This condition can be satisfied if one combines the positive and the negative 
branches of the solution (120) as follows: 

where 

vl = v~ + d[, 02 = ~ + d~ ( 1 3 3 )  

/ \1/( 1 -k )  

l/I = 

L0 
/ \1/( 1 -k)  

t-0 

forx  -> - ro  
(134) 

otherwise 

for x2 --> r0 
(135) 

otherwise 
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/ \ • / (1-k)  

L0 

forxl ~ - t o  
(136) 

otherwise 
/ \ l / ( I  - k )  

t.0 otherwise 

Thus, the solution (134)-(137) describes the flow around a rigid particle of 
radius r ,  = r 0 at rest. But before discussing the cause of this flow, let us 
find the force of interaction between the flow and the particle. 

Obviously, this force can be found as 

Ff = ~12r* d~p (138) 

i.e., 
. , k .  \k/(I  - k )  

Ff=4~rr.pv~o( k~ ~ t ~  (139) \l - k] 
This equation is valid only until the condition (128) is satisfied, i.e. 

[with reference to (131)] until 

Ff <-- Ffm~x ~-- O(4'trpve0) (140) 

Let us assume that some external force F is applied to the particle at 
rest. In contrast to the classical case, the flow starts moving, first raising the 
reaction force (139), and only after that does the particle start moving. This 
situation resembles the behavior of a rigid body on a rough surface which can 
start moving only after the applied force exceeds the maximum static friction. 

The maximum force due to infinitesimal static friction of the liquid is 
represented by (140). It depends upon e0, which is the physical constant 
characterizing this liquid. 

The time delay for the motion of the particle is found from the condi- 
tion (131), 

At ~ O(~lr2.1v) (141) 

where ~/ is given by (131). 
As follows from (141), this delay depends upon k, which is another 

physical constant characterizing the liquid. 
For 

t > At or F > F ~ ,  (142) 
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the particle starts moving, and one has to apply the original version of the 
momentum equations (39), which in this domain will coincide with the 
Navier-Stokes equations. This means that in the domain (142) the velocity 
field and the drag force can be found from the Stokes formulas (109) and ( l l  2). 

8. P H E N O M E N O L O G I C A L  A P P R O A C H  

As emphasized in the previous sections, both constants k and ~0 [see 
equations (8) and (26)] represent additional physical properties of liquids. 
and therefore they must be found from experiments. However, in this section 
we will find both k and ~0 based upon phenomenological concepts. For that 
purpose let us compare the solutions to equations (77) and (80) for 

1 
t --> --  = t ,  (143) 

E0 

The solution to equation (77) expressed by equation (107) approaches 
the equilibrium at t = to, where to is defined by equation (108). The solution 
to equation (80) expressed by (81) theoretically never approaches equilibrium; 
however, in finite time it approaches a domain of insensitivity where the 
velocity Uoo is so small that it cannot be detected by sensors. Hence, the 
actual time t~ of approaching equilibrium by the solution (81) can be found as 

/0 - -  E0 ,rl.2~ 

where 

llO0 
= - -  < <  1 (145) 

U~ 

in which Uo0 is the value of  the smallest detectable velocity, and 

u ,  = u at t = t ,  (146) 

Based upon current measurement techniques, 

~ 0.01 (147) 

Recalling that the solutions (81) and (107) are different only within a small 
neighborhood of equilibrium, let us find "equivalent" values of k = k* and 
eo = ~ from the condition that the time to of approaching equilibrium by 
the solution (107) and the time t~ of approaching the domain of insensitivity 
are the same. Equating to and t~ from equations (108) and (144), respectively, 
one arrives at a phenomenological relationship between k* and ~i~: 
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'rr2(1 - k*)v 
Gd' = 412 ln{(k* - 1) ln[('rr/4)(l - 6)]} ' ~ ~ 0.01 (148) 

The second relationship between these parameters can be derived from 
the following phenomenological concept. Turning to the constitutive law 
(26), one has to provide the property that this law is sufficiently close to the 
linear one for large velocity gradients (which, however, are smaller than the 
molecular velocity gradients). Since the molecular velocity gradients are of 
the order of I/r, where 'r is the Maxwell relaxation time, one can write 

e-~x] ~ 1 - ~ (149) 

This condition guarantees that the difference between the constitutive law 
(26) and the linear law is within the bounds of accuracy of the velocity 
measurements for the entire domain where the equations for a Newtonian 
liquid are applicable. 

As follows from equation (149), 

G~' = 1 (1 - ~),~,-k.~ (150) 
T 

Equations (148) and (150) express the phenomenological versions of  the 
physical parameters k and Go via the physical constant "r and the accuracy of 
measurements 6. In contrast to k and %, the constants k* and ei~ are problem- 
dependent. Indeed, (148) was derived from the solution to a particular problem 
discussed in Section 6, and that is why it contains the representative length 
I. However, despite this limitation, equations (148) and (150) provide a good 
representation of  the order of these parameters. 

Equations (148) and (150) solved for water at 20~ give 

1" = 10 -9 sec, ~ = 0.01, v ----- 10 -2 cm2 , l = I0 cm 
sec 

(151) 

and lead to the following values of k* and G~': 

3109 
k - 3111 ' G0 = 2.66 • 10 -5 sec (152) 

Now we can evaluate the parameters [3, ~/, r0, Fmax, and At introduced in the 
previous section [see (121), (131), (140), and (141), respectively]: 

[3 = 2 • 20 -7, %, ~ 1, r0 ~ "Vt, Fmax ~- 4.266"rr10-Spvr., At --- r2* 
"1) 

(153) 
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9, APPLICATION TO ACOUSTICS 

So far we have considered only incompressible fluids. However, all the 
modifications of the constitutive law can be applied to gases, too. Indeed, 
turning to equation (25), one can write (Ziegler, 1963) 

P ~ :  2~'(--v/'~zv/7-z/k-' + ( I x ' + \  eo ] ~ll.z"](l']k-']\%] (154) 

where Ix" is the second viscosity. Then, instead of equation (25) one obtains 

crjk 2Ix' = eft p ~jk (155) \ C o /  ~jk+ Ix" 

Here 

It = eii (156) 

is the first invariant of the rate-of-strain tensor and ~jk is the Kronecker delta. 
The momentum and mass conservation equations, instead of (39) and 

(40), take the following form, respectively: 

p + v V v  

=-Vp+ix '  - -  [ V . ( T v + V v r ) ]  
L\  t0 / 

\ t o /  

+ Ix' + ~ Ix" VV.v + V-vV (157) 

a_s + V.(pv) = 0 (158) 
at 

For a one-dimensional compressible viscous flow, the normal stress is given 
by the following expression: 

o'= = - p  + Ix" + Ix )e0 (159) 

while the momentum and mass conservation equations describing acoustic 
waves reduce to 
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in which 

au ap + # a (au'l ~ 
(160) 

ap _ au 
P0 (161) 

at ax 

~ = (4  ix" + lx')~l-* (162) 

and P0 is the unperturbed value of the density. 
After elimination of  the pressure p, one arrives at the governing equation 

for acoustic waves: 

O2U C2 02U 02 (Ou~ ~ c2 _ dp ~ = ~ (163) 
- ~  - - ~  + v atax \ a x ] '  - d--p' p 

Usually the last term describing viscous effects is ignored since it is 
much smaller than the elastic term. However, in our case the viscous term 
can be as large as the elastic term if the velocity gradients are small, i.e., if 

au 
- -  < c=0 (164) 
ax 

In order to simplify equation (163), let us introduce a new variable 'r instead 
of t: 

x 
"r = t - -  (165) 

c 

Then equation (163) reduces to 

au a2 a ( a u l  ~ a 2 =  v 
a---x - 0--~ \Ox} ' -~ (eoC) ~-k (166) 

Equation (166) is" identical to equation (77) if the variables x and "r are 
replaced by t and y, respectively. 

Let us find an approximate solution to equation (166) subject to the 
following initial condition: 

u(0, "r) = lp('r), -oo < x < +oo (167) 

Seeking the solution in the form 

= [ ux(x)fx(.r) ark (168) u 
J 
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and substituting (168) into (166), one obtains 

fh = [(f~)~]' (169) 

These equations are similar to equations (96), and therefore their solutions (97) 
can be simplified to the approximations (99), which lead to the following form: 

f 'x + h2fx = O, f x  = e i~''r (170) 

Then the functions ux can be found from 

dux 
- -  + a2h2x k = 0 
dx 

whence 

(171) 

ux = uO[l _ ( l  _ k)a2h 2 ] u(i-k) 
" u~ x (172) 

Substituting (170) and (172) into (168), one arrives at a Fourier integral: 

u = I u O [ l  ( l - k ) a 2 h 2  ]'/('-~') 
uO X e ix'r arA. (173) 

Since 
/- 

~('r) = J u~ ixr dK (174) 

the values of u ~ can be found as a Fourier coefficients for qff-r): 

if u ~ = ~ ~p(~)e -i~'" d~ (175) 

Substituting (175) into (168), one obtains the solution in the following inte- 
gral form: 

.1 I/(i-~) 
-- ( I  -- k)a2h2x} eiXTclk (176) 

J 

Let us assume that 

Then 

u(0, ~) = ~(r) = u0 sin tot (177) 
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h2 = o k + l ,  /.40 = U0 

and, as follows from equation (176), 

(178) 

(179) 

Equation (179) describes a traveling acoustic wave generated by a sinusoidal 
source of  sound located at x -- 0. The wave propagates with the classical 
acoustic speed c z = d p / d p ,  but the amplitude of this wave gradually decreases 
with increase of the distance x from the source. 

Eventually, at the distance 

u6 - k t a l - k  1 - k ) c  3 Uo to (180) 
I xl ~ l (1 - k)a2to 2 - v00 "T \ c% ] 

the sound vanishes, being absorbed due to the viscosity. 
As follows from (180), the critical distance l depends upon two new 

physical constants: k and %. As expected, this distance decreases with the 
increase of  viscosity v and the frequency ca. 

It should be recalled that in the classical case the solution to the same 
problem, instead of (179), would be 

This means that an acoustic wave is never fully absorbed; the distance over 
which the source of sound can be detected is infinitely large. The condition 
(180) gives a correction to this idealized result, stating that this distance 
is finite. 

10. A P P L I C A T I O N  TO E L A S T I C  BODIES 

Effects similar to those described in viscous fluids occur in elastic bodies 
if dissipation processes are taken into account. Indeed, in this case the total 
stress tensor is composed of  elastic and viscous components: 

cr = (re + (Iv (182) 

while usually 

(r e > >  av (183) 

However, in domains close to equilibria, the elastic stresses vanish, and 

cry > >  ere (184) 
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But in these domains the viscous stress can be represented by (26), and 
therefore the governing equations take the form (55). This means that all 
the effects described above, including finite time of approaching equilibria, 
nonuniqueness of solutions starting from equilibria, as well as finite distance 
of absorption of an acoustic wave, occur in elastic bodies in domains close 
to equilibria. 

11. DISCUSSION AND CONCLUSION 

Plasticity effects are well pronounced in heavy viscous liquids such as 
lubricators and dyes, but they have never been studied in classical Newtonian 
fluids like water or air, presumably because they were expected to be vanish- 
ingly small. Our analysis demonstrates that although the quantitative contribu- 
tion of these effects is small indeed, qualitatively even infinitesimal static 
friction leads to two new fundamental properties: the theoretically finite times 
of approaching equilibria, and the nonuniqueness of solutions which start 
at equilibria. 

The first property can be associated with the paradox of irreversibility-- 
one of the most fundamental and yet not fully understood problems in physics. 
Indeed, the concept of viscosity can be derived, on the microscopic level of 
description, from the fully reversible equations of Hamiltonian dynamics. 
This means that the irreversible processes in viscous flows are completely 
composed of reversible events. One of the most convincing and well-accepted 
explanations of this paradox is that the change from an ordered arrangement 
to a disordered arrangement on the microscopic level as a source of irrevers- 
ibility is much more probable than a change in the opposite direction. 

In other words, any macroscopic system, in principle, can return to its 
initial state passing through all of its previous states; however, the probability 
of such an event is so small (but not zero!) that the period of time during 
which this event can occur is extremely large in comparison to the time scale 
of the macroscopic motions. However, the Navier-Stokes equations, or their 
simplified version--the diffusion equation--do not have any time scale: the 
time of approaching an equilibrium is unbounded, and therefore these equa- 
tions exclude any reversible solutions even if t ---> oo. The only logical way 
out of this situation is to introduced a time scale into the Navier-Stokes 
equations so that the time of approaching an equilibrium will be finite. Then 
one can argue that this time is not large enough to include reversible solutions. 
Actually this time scale was introduced by relaxing the Lipschitz condition 
at the equilibrium states [see (52)]. Simple experiments which allow one to 
find the constants defining this scale were also described. 

The second property is linked to another fundamental, but still unsolved 
problem of theoretical physics--the problem of turbulence. From a formal 
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mathematical viewpoint, turbulence results from dynamical instability of the 
Navier-Stokes equations when the Reynolds number exceeds certain critical 
values, and it is described by stochastic solutions. But how can such solutions 
occur from a fully deterministic model? A physical explanation is very simple: 
possible uncertainties and small errors (which always can be interpreted as 
random components of initial conditions) are amplified by the mechanism 
of instability, and that leads to the stochasticity of the solutions for supercritical 
Reynolds numbers. In other words, turbulence is caused by a random input 
into the fully deterministic Navier-Stokes equations. However, a mathemati- 
cian can argue that, in principle, there is always a possibility that there are 
no uncertainties or errors in initial conditions at all, and then the solutions 
will never become stochastic. The modified version of the Navier-Stokes 
equations attains a very fundamental new property: it generates stochasticity 
as a result of the nonuniqueness of the solution, which, in turn, follows 
from relaxation of the Lipschitz condition at equilibrium states. In cases of 
dynamical instability the random components of the solution are amplified 
and that leads to stochastic solutions simulating turbulence. Otherwise these 
random components decay and vanish. 

It should be stressed that although the qualitative differences between 
the classical and modified Navier-Stokes equations are fundamental, all the 
new effects emerge within vanishingly small neighborhoods of equilibrium 
states which are the only domains where the modified governing equations 
are different from classical. This means that the formal differences between 
the solutions to classical and modified models may be not detectable in 
domains which do not include equilibrium states. 

A P P E N D I X  

The governing equations of classical dynamics based upon Newton's 
laws 

d OL aL OR 
- i = 1 , 2  . . . .  n ( A I )  

dt O(li Oqi 0(]i' 

where L is the Lagrangian and q and qi are the generalized coordinates and 
velocities, include a dissipation function R(~I/Ij) which is associated with the 
friction forces: 

F i ( q , ,  02 . . . . .  4 . )  - 
BR 

(A2) 

The structure of the functions (A2) does not follow from Newton's laws, 
and, strictly speaking, some additional assumptions should be made in order 
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to define them. The "natural" assumption (which has been never challenged) 
is that these functions can be expanded in Taylor series with respect to an 
equilibrium state 

qi = 0 (A3) 

Obviously this requires the existence of the derivatives 

OFi 
< ~  at ( r  (A4) 

o0j 

i.e., Fi must satisfy the Lipschitz condition. This condition allows one to 
describe the Newtonian dynamics within the mathematical framework of the 
classical theory of  differential equations. However, there is a certain price for 
such mathematical "convenience": the Newtonian dynamics with dissipative 
forces remains fully reversible in the sense that its governing equations are 
invariant with respect to time inversion, t ~ - t .  As stressed by I. Prigogine, 
in this view future and past play the same role: nothing can appear in the 
future which could not have already existed in the past, since the trajectories 
followed by particles can never cross (unless t ~ ___~). This means that 
classical dynamics cannot explain the emergence of new dynamical patterns 
in nature in the same way in which nonequilibrium thermodynamics does. 

In order to trivialize the mathematical part of  our argument let us consider 
the one-dimensional motion of  a particle decelerated by a friction force: 

m~ = F(v) (A5) 

in which m is mass and v is velocity. Invoking the assumption (A4) one can 
linearize the force F with respect to the equilibrium v = 0: 

F ---) - c t v  at v ---) 0, 

and the solution to (A5) for v --) 0 is 

V = 1)0 e-(~ ~ 0 at 

c t = -  > 0  
v=O 

(A6) 

t ~ 0% v0 = v(0) (A7) 

As follows from (A7), the equilibrium v = 0 cannot be approached in 
finite time. The usual explanation of  such a paradox is that, to the accuracy 
of our limited scale of observation, the particle "actually" approaches the 
equilibrium in finite time. In other words, eventually the trajectories (A7) 
and v = 0 become so close that we cannot distinguish them. The same type 
of explanation is used for the emergence of  chaos: if two trajectories originally 
are "very close" and then they diverge exponentially, the same initial condi- 
tions can be applied to either of  them, and therefore the motion cannot 
be traced. 
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Hence, there is a variety of phenomena whose explanations cannot be 
based directly upon classical dynamics: in addition, they require some "words" 
about a scale of observation, "very close" trajectories, etc. 

In this note we propose a new structure of the dissipation forces which 
eliminates the paradox discussed above and makes the Newtonian dynamics 
irreversible. The main properties of the new structure are based upon a 
violation of the Lipschitz condition (A4). Turning to the example (A5), let 
us assume that 

F = -c~v ~, k -  P---P--- < 1 (A8) 
p + 2  

in which p is an odd number. 
By selecting large p, one can make k close to 1 so that Eqs. (A6) and 

(A8) will be almost identical everywhere excluding a small neighborhood of 
the equilibrium point v = 0, while, as follows from (A8), at this point 

OF 
-- kol./)k-I ~ O0 at v ---> 0 (A9) 

Ov 

Hence, the condition (A4) is violated; the friction force grows sharply 
at the equilibrium point, and then it gradually approaches the straight line 
(A6). This effect can be interpreted as a jump from static to kinetic friction. 

It appears that this "small" difference between the friction forces (A6) 
and (A8) leads to fundamental changes in Newtonian dynamics. 

First, the time of approaching the equilibrium v = 0 becomes finite. 
Indeed, as follows from (A5) and (A8), 

f o m dr)_  m y  t - k  

to = - ocrJ' c~(l - k) 
v0 

< oo (A10) 

Obviously this integral diverges in the classical case when k --> 1. 
Second, the motion described by equation (A8) 

I 1 I/(I-k) 
v =  v~_ k _  a__(l - k ) t  

m 

is irreversible since the time-backward motion 

{[ v _  = v~ - k  - ~ (I - k ) ( - t )  
m 

( A l l )  

(AI2) 

is imaginary. [One can verify that the classical version of this motion (A7) 
is fully reversible if t < o~.] 



1458 Zak and Meyers 

As shown by Zak (1992), the equilibrium point v = 0 of equation (A8) 
represents a terminal attractor which is "infinitely" stable and is intersected 
by all the attracted transients (Fig. 2). Therefore, the uniqueness of  the solution 
at v = 0 is violated, and the motion for t < to [see (A 10)] is totally "forgotten." 
[This is a mathematical implication of  irreversibility of  the dynamics (8).] 

So far we have been concerned with stabilizing effects of dissipative 
forces. However, as is well known from the dynamics of nonconservative 
systems, these forces can destabilize the motion when they feed external 
energy into the system (the transmission of energy from laminar to turbulent 
flow in fluid dynamics, or from rotations to oscillations in dynamics of 
flexible systems). In order to capture the fundamental properties of these 
effects in the case of  a "terminal" dissipative force (A8) by using the simplest 
mathematical model, let us turn to (A5) and assume that now the friction 
force feeds energy into the system: 

m/J = etv ~, k - P----P-- < 1 (AI3) 
p + 2  

One can verify that for equation (AI3) the equilibrium point v = 0 
becomes a terminal repeller, and since 

m dv ketv*-I --~ ~ at v ---) 0 (AI4) 

it is "infinitely" unstable. If the initial condition is infinitely close to this 
repeller, the transient solution will escape it during a finite time period: 

I~dv_ v~-* 
to = v k 1-- -~  < 0o (AI5) 

--*0 

while for a regular repeller the time would be infinite. 
As in the case of a terminal attractor, here the motion is also irreversible 

since the inversion of  time in the solution to (AI4), 

v = _+ (1 - k)t (AI6) 

leads to imaginary values of v. 
But in addition, terminal repellers possess even more surprising charac- 

teristics: the solution (A 16) becomes totally unpredictable. Indeed two differ- 
ent motions described by the solution (A16) are possible for "almost the 
same" (v0 = +~ ---) 0 or v0 = - ~  ~ 0 at t = - +  0) initial conditions. The 
most essential property of this result is that the divergence of these two 
solutions is characterized by an unbounded rate: 
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( t l / (  I -k) / 
~ r = l i m ' l l n  I - - ~ 0 1 J ~ = t - - , , o \ t  at I v 0 1 ~ 0  (A17) 

In contrast to the classical case where to ~ 0% here ~ can be defined 
in an arbitrarily small time interval to, since during this interval the initial 
infinitesimal distance between the solutions becomes finite. Thus, a terminal 
repeller represents a vanishingly short, but infinitely powerful "pulse of 
unpredictability" which is pumped into the system via terminal dissipative 
forces. Obviously, failure of the uniqueness of the solution here results from 
the violation of the Lipschitz condition (A4) at v = 0. 

As is known from classical dynamics, the combination of stabilizing 
and destabilizing effects can lead to a new phenomenon: chaos. In order to 
describe similar effects in dynamics with terminal dissipative forces let us 
slightly modify (AI3): 

mf~ = etv k cos tot (A18) 

Here stabilization and destabilization effects alternate. With the initial 
condition v ~ 0 at t --+ 0 the exact solution to (AI8) consists of a regular 
solution 

l l/(I -k) 
= + [ e t ( l  - -  k)sin tot.] , 

v - k mto 
v :/= 0 (AI9) 

and a singular solution 

v = 0 (A20) 

During the first period 0 < t < "rr/2to the equilibrium point (A20) is a 
terminal repeller. Therefore, within this period, the motion can follow one 
of two possible trajectories (AI9) (each with the probability 1/2) which 
diverge with unbounded rate (AI7) at v = 0. During the next period "rr/2to 
< t < 3"rr/2to theequilibrium point (A20) becomes a terminal attractor; the 
solution approaches it at t = -rrto and it remains motionless until t > 3"rr/2to. 
After that the terminal attractor becomes a terminal repeller, and the solution 
escapes again, etc. 

It is important to notice that each time the system escapes the terminal 
repeller, the solution splits into two symmetric branches, so that there are 2" 
possible scenarios of the oscillations with respect to the center v = 0, while 
each scenario has the probability 2-" (n is the number of cycles). Hence, the 
motion (AI9) resembles chaotic oscillations known from classical dynamics: 
it combines random characteristics with the attraction to a center. However, 
in classical case the chaos is caused by a supersensitivity to the initial 
conditions, while the uniqueness of the solution for fixed initial conditions 
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is guaranteed. In contrast, the chaos in the oscillations (AI9) is caused by 
the failure of the uniqueness of the solution at the equilibrium points, and it 
has a well-organized probabilistic structure. Since the time of approaching 
the equilibrium point v = 0 by the solution (AI9) is finite, this type of chaos 
can be called terminal. 
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